
Extraction of Statistically Significant Malware Behaviors

Sirinda Palahan
Penn State University
sxp969@psu.edu

Domagoj Babić
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ABSTRACT
Traditionally, analysis of malicious software is only a semi-
automated process, often requiring a skilled human analyst.
As new malware appears at an increasingly alarming rate —
now over 100 thousand new variants each day — there is a
need for automated techniques for identifying suspicious be-
havior in programs. In this paper, we propose a method for
extracting statistically significant malicious behaviors from
a system call dependency graph (obtained by running a bi-
nary executable in a sandbox). Our approach is based on a
new method for measuring the statistical significance of sub-
graphs. Given a training set of graphs from two classes (e.g.,
goodware and malware system call dependency graphs), our
method can assign p-values to subgraphs of new graph in-
stances even if those subgraphs have not appeared before in
the training data (thus possibly capturing new behaviors or
disguised versions of existing behaviors).

1. INTRODUCTION
Signature-based detection has been a major technique in

commercial anti-virus software. However, that approach is
ineffective against code obfuscation techniques. To address
this problem, most of the current work, e.g., [1, 7, 12, 10],
has focused on behavior-based detection techniques because
the semantics of malware are unlikely to change even after
a series of syntactic code transformations.

To develop effective behavior-based detection techniques,
it is important to understand how malware behaves. Pre-
vious studies (e.g., [14, 20]) typically used experts to con-
struct malware specifications that describe malicious behav-
iors. This requires deep expertise and is costly in terms of
time and effort. To address the problem, Christodorescu, et
al. [7] and Fredrikson et al. [12] proposed methods to auto-
matically generate specifications of malicious activity from
samples of malicious and benign executables. These meth-
ods only recognize behaviors that appeared in the training
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data and they do not provide scores that indicate the statis-
tical confidence that a (possibly new) behavior is malicious.

In this paper, we propose a new method for identifying
malicious behavior and assigning it a p-value (a measure of
statistical confidence that the behavior is indeed malicious).
It requires a training set consisting of malware and good-
ware executables. Using dynamic program analysis tools,
we represent each executable as a graph. We then train a
linear classifier to discriminate between malware and good-
ware; the parameters of this classifier are crucial for our
statistical test. To evaluate a new executable, we can use
the linear classifier to categorize it as goodware or malware.
To then identify its suspicious behaviors, we again represent
it as a graph and use a subgraph mining algorithm to ex-
tract a candidate subgraph. We assign confidence scores to
this subgraph with statistical procedures that use the classi-
fier weights obtained from the training phase; the statistical
procedures work for any subgraph, even if it did not appear
in the training data. The framework is simple and modu-
lar – one can plug in different program analysis tools, linear
classifiers, and subgraph mining algorithms to take advan-
tage of progress in those areas. Our statistical tests work
with all of these options and are easy to implement.

It is important to note that the evaluation of malware
specifications is a challenging task. Manual construction
of malware specifications is labor-intensive and error-prone;
the resulting relatively small quantity of specifications will
often have high false positive rates [14]. Other work [7,
12] compared extracted malware behavior in the form of
graphs to textual descriptions provided by anti-virus com-
panies (apparently also manually). In this paper we take
a more automated approach designed to reduce the risk of
experimenter bias. We use carefully designed experiments
to both validate the quality of the p-values and the quality
of the suspicious executable behaviors that were identified.

In summary, the contributions of this paper are:

1. A framework for identifying suspicious behavior in pro-
grams and assigning them statistical significance scores.
The framework is modular, easy to implement, and
does not require the malware test set to exhibit the
same behaviors as the malware training set.

2. A careful empirical evaluation of the extracted behav-
iors. This includes an evaluation of p-values and some
initial experimental evidence for the identification of
malicious behaviors not seen in the training data.

We discuss related work in Section 2. We present our
framework in Section 3. The framework includes a training



phase (Section 3.1) and a deployment phase (Section 3.2).
We then empirically evaluate our methods in Section 4.

2. RELATED WORK

2.1 Malware Specification
Christodorescu, et al. [7] use contrast subgraph mining

to construct specifications by comparing syscall dependency
graphs of malware and goodware samples to obtain activ-
ities appearing only in malware. They assess specification
quality by manual comparison to specifications produced by
an expert. This technique does not produce statistical sig-
nificance scores for the specifications. Comparetti, et al. [8]
propose a novel method to find dormant behaviors statically
in binaries, based on manually-provided behavior specifica-
tions. Our work complements theirs, as our approach can
be used to identify statistically significant behavior specifica-
tions. Fredrikson, et al. [12] use LEAP [25] to extract behav-
iors that are synthesized by concept analysis and simulated
annealing to generate specifications. The authors evaluate
their specifications by manually comparing with behavior
reports from malware experts. Even though LEAP, a signif-
icant subgraph extraction algorithm, is used, no statistical
significance value can be calculated for new executables.

2.2 Significant Subgraph Extraction
There are relatively few algorithms that extract signifi-

cant subgraphs. LEAP [25] finds significant subgraphs that
are frequent in the positive dataset and rare in the negative
dataset and maximizes a user-defined significance function.
For malware detection, it is used to mine the system call
dependency graphs [12]. However, when such a system is
deployed for analyzing new executables, searching for exact
subgraphs could be a brittle approach – LEAP will not iden-
tify malicious behavior if it does not correspond to a graph it
has seen before (a slight change in the graph may be enough
to avoid detection). Our proposed method also mines sys-
tem call dependency graphs but is more flexible and so
can identify significant behaviors whose corresponding sub-
graphs have not appeared in the training data. Ranu and
Singh [18] propose GraphSig, a frequent subgraph mining
algorithm, to find significant subgraphs in large databases.
GraphSig prunes out the search space by testing the signif-
icance of a subgraph; the definition of significance is based
on a subgraph’s frequency. GraphSig uses GraphRank [13]
for the statistical significance testing. GraphRank trans-
forms subgraphs to feature vectors and calculates p-values
of vectors based on a binomial model. Note that frequent
subgraphs are not necessarily indicative of malicious behav-
ior encapsulated in system call dependency graphs.

Milo, et al. [16] propose an approach to mine network
motifs which are significant subgraphs appearing more fre-
quently in a complex network than in random networks. The
authors generate random networks by permuting edges while
maintaining network properties, such as degree of nodes and
number of edges. The p-value of a subgraph is obtained
by counting random networks that contain the subgraph
with a support (i.e. frequency) greater than or equal to
the observed support. Milo’s approach may not scale to
very large networks because of the complexity of subgraph
isomorphism. Scott, et al. [19] developed a method to find
significant protein interaction paths in a large scale protein
network data. A color coding approach is extended to find

paths between two given nodes with the minimum sum of
edge weights. They adopt a randomization approach for sta-
tistical significance testing – they compare scores of paths
they find to scores of paths found in random networks whose
edges have been shuffled. Our approach uses randomization
for statistical testing but we carefully avoid comparisons to
random graphs (since they may not be plausible representa-
tions of system call dependency graphs).

3. THE STATISTICAL FRAMEWORK
We next describe the major components of our framework

for identifying statistically significant malicious behaviors.
An overview of the framework is shown in Figure 1. There
are two phases: the training phase (where statistical infor-
mation about malware and goodware is collected) and the
deployment phase (for analyzing a new executable).

The training phase (Section 3.1) requires samples of good-
ware and malware executables. These executables are con-
verted into system call dependency graphs (SDG) using dy-
namic analysis (Section 3.1.1). We build a linear classifier to
distinguish malware from goodware and we use its parame-
ters to obtain a function that assigns weights to edges (Sec-
tion 3.1.2); these weights are used by our statistical tests.

The deployment phase (Section 3.2) is used to analyze a
new executable for suspicious behavior. The linear classifier
from the training phase can be used to classify it as mal-
ware or goodware. To extract suspicious behavior, we first
build the SDG and assign edge weights based on the param-
eters of the linear classifier. We then use a subgraph mining
algorithm to identify candidate subgraphs (Section 3.2.1);
any subgraph mining algorithm for weighted or unweighted
graphs can be used here as a black box. Then our statis-
tical tests (Section 3.2.2) assign significance scores to the
behaviors associated with those subgraphs. These tests use
the edge weights to assign p-values and automatically cor-
rect for the multiple testing problem (explained in Section
3.2.2), which is an important concern in subgraph mining.

3.1 The Training Phase
We now describe the two components of the training phase:

building system call dependency graphs and building a linear
malware classifier whose parameters will be used to assign
weights to edges in those graph.

3.1.1 System Call Dependency Graphs (SDGs)
Recent research (e.g., [23, 4]) shows that a program’s be-

havior can be inferred from its pattern of system calls. The
outputs produced by some system calls can affect the inputs
of other system calls. Hence, it is natural and common to
represent a program’s behavior using a system call depen-
dency graph (SDG) whose nodes correspond to system call
invocations and whose directed edges represent data flow be-
tween pairs of system calls. This abstraction converts pro-
gram analysis into a graph mining problem where subgraphs
correspond to program behaviors.

Definition 1 (SDG). A system call dependency graph
(SDG) is a directed graph G(E, V ) representing data-flow
dependencies among system call invocations, where V is the
set of invoked system calls and E ⊂ V ×V is a set of directed
edges. The directed edge, (x, y) ∈ E , from vertex x to vertex
y indicates that the output of system call invocation x is
consumed by system call invocation y.



(a) Training phase

(b) Deployment phase

Figure 1: Framework overview – identifying statistically significant malicious behavior

To create an SDG, we must execute a program in a sand-
box, trace its system calls, and infer dependencies between
the system call invocations. The most accurate method for
doing this is dynamic taint analysis [17], although our at-
tempts to reproduce existing work (such as [3]), show that
faster heuristic methods can work just as well. Our frame-
work can work with any SDG generator, however, our exper-
iments used WUSSTrace [24] (which injects a shared library
into the address space of a traced process) to generate pro-
gram execution traces and Pywuss [3] to parse these traces
to generate an approximate SDG. Pywuss creates a directed
edge between two system call invocations x and y, if x re-
turns a handle that is used as an input to y. An SDG is
created for each executable in the training set.

Note that disassembling and static analysis or statisti-
cal analysis of a binary can provide additional information
about a program. Incorporating this information into our
framework is a direction for future work.

3.1.2 Adding Weights with Linear Classifiers
Given a set of SDGs belonging to goodware and malware

executables, the next step is to build a malware classifier
and use its parameters to assign weights to the edges of
those graphs. We convert each SDG into a feature vector
by generating one feature for each ordered pair (x, y); the
value of the feature is the number of times (x, y) appeared
in the SDG. Using these feature vectors, we then train a
linear classifier (such as logistic regression) to discriminate
between malware and goodware. In this way, the linear clas-
sifier learns a weight w(x,y) for each ordered pair of system
calls (x, y); a positive value of w(x,y) indicates that (x, y) is
associated with malware and a negative value indicates it
is associated with goodware. The result is a weighted SDG
where each edge (x, y) has weight w(x,y). These weights will
be used for subgraph extraction and significance testing.

3.2 The Deployment Phase
The deployment phase is used to analyze a new executable.

First, we obtain its SDG as in Section 3.1.1. We then assign
weights to the edges of the graph using the same weights
that were learned in the training phase (see Section 3.1.2).
The next steps are to use a subgraph mining algorithm to
identify candidate subgraphs that may correspond to suspi-
cious behaviors and then to assign them a statistical con-
fidence score. We discuss subgraph extraction in Section
3.2.1. The mining algorithms can use the edge weights to

identify suspicious subgraphs. Since the weights are also
part of the statistical test, we must automatically account
for variations of the multiple testing problem. We address
this issue and present our statistical tests in Section 3.2.2.

3.2.1 Subgraph Extraction
A subgraph of an SDG corresponds to a behavior exhib-

ited by an executable. A subgraph can be deemed suspicious
when it contains many edges with positive weights, espe-
cially when the concentration of positively-weighted edges
in the subgraph is higher than in the rest of the SDG.

Any algorithm for finding (weighted) subgraphs can be
used as a black box in our framework. The goal of subgraph
mining here is to identify subgraphs with high concentra-
tions of positive weights (rather than specifically searching
for subgraphs or templates that previously appeared in the
training data). This corresponds to the hypothesis that sys-
tem calls which commonly participate in malicious behavior
are used together to achieve their purpose. In practice, the
SDG has many small connected components and so it makes
sense to return a subgraph consisting of several disjoint con-
nected components.

In our implementation, we use a variation Kruskal’s span-
ning tree algorithm [9] to find subgraphs (not necessarily
trees) in each connected component of the SDG. The key
steps appear in Algorithm 2 (kMines). Initially, each node
u is its own temporary subgraph (which will later grow).
Graph(u) is the temporary subgraph containing u. The al-
gorithm considers each edge (u, v) in descending order by
weight. Let Edge(u, v) be the union of edges in Graph(u),
Graph(v), and the edges connecting them. Line 7 heuristi-
cally merges Graph(u) and Graph(v) (and the edges between
them) if the sum of weights of edges in Edge(u, v) is greater
than or equal to k times the maximum weight in Edge(u, v)
(where 0 < k ≤ 1).. The condition encourages the algo-
rithm to merge temporary subgraphs instead of returning
many small subgraphs (possibly with just one edge each)

These key steps are wrapped inside Algorithm 1 which
returns the final subgraph B (possibly consisting of disjoint
connected components). Algorithm 1 applies Algorithm 2
(kMine) to each connected component g of the SDG. It then
orders the subgraphs returned by kMine in descending order
by average weight (lines 5-6) and iteratively adds them to
B. The algorithm keeps iterating until the addition of a
new subgraph to B increases sum of weights by less than
p%. Afterwards it returns B as the final extracted subgraph



(lines 8-14) . Our implementation uses k = 0.5 and p = 5%,
which were chosen subjectively from a few data samples so
that the returned subgraphs were not too big (i.e. a large
fraction of the original graph) nor too small (a few edges).

Algorithm 1 Kruskal-based subgraph extraction

Input: G (a weighted SDG), p, k
Output: B, a collection of subgraphs
1: S ← ∅
2: for all connected components g in G do
3: S ← S

⋃
kMine(g,k)

4: end for
5: Sort components in S by decreasing average weight
6: B ← max{s|component s ∈ S}
7: S ← S \{B}
8: for each connected component s in S do
9: if (sum weight(B,s) - sum weight(B))≥ p∗sum weight(B)

then
10: B ← B

⋃
s

11: else
12: return B
13: end if

14: end for

Algorithm 2 kMine(g,k)

Input: a connected component g, k
Output: S, a collection of subgraphs
1: S ← ∅
2: for node(u) in g do
3: S ← S

⋃
Graph(u)

4: end for
5: for each edge, euv, in g, ordered by weights, wuv, do
6: if

∑
eij∈Edge(u,v)

wij ≥ k ∗ max {wij |eij ∈ Edge(u, v)}

then
7: Graph(u) ← merge(Graph(u), Graph(v))
8: S ← S\{Graph(v)}
9: end if

10: end for
11: return S

3.2.2 Significance Testing
We next describe our statistical tests for the candidate

subgraph returned by the graph mining algorithm. We present
three p-value computation techniques: empirical p-values
that can be viewed as data-driven false positive rates, re-
sampling p-values that are approximations to empirical p-
values and useful when the training data is small, and per-
mutation p-values which complement the other two. Permu-
tation p-values consider how concentrated the positive edges
are, while the other p-values additionally incorporate infor-
mation about how many positive edges there are relative to
goodware and malware.

Note that statistical significance is not a property of a
subgraph – it is a property of the procedure that found the
subgraph. To see why, consider the following two types of
search strategies. Strategy A ignores edge weights when it
returns a candidate subgraph while Strategy B returns the
subgraph with largest average edge weight. If the subgraph
returned by Strategy A has a high average edge weight, this
is likely to be statistically significant because such an occur-

rence is generally unlikely to happen by chance; on the other
hand, Strategy B is expected return subgraphs with large av-
erage edge weights so the bar is higher – the output returned
by B is statistically significant only if its average edge weight
is much higher than what we would normally expect from
B. This phenomenon underlies the multiple testing problem
[5] and our procedures automatically account for it.

Empirical p-values with reference populations.
Empirical p-values are a comparison between a subgraph

extracted from a given SDG to subgraphs extracted from
SDGs belonging to a reference population. Let G1, . . . , GN

be weighted SDGs from a reference population (e.g., the set
of goodware in the training data or the set of malware in
the training data). For each Gi, let Si be the subgraph
extracted from Gi by the subgraph mining algorithm and
let Bi be the average weight of edges in Si.

1 To test a new
executable G∗, let S∗ be its extracted subgraph and let B∗

be the average edge weight of S∗. The empirical p-value
is the fraction of the reference population whose subgraphs
had higher average edge weight: 1

N

∑N
i=1 1{Bi≥B∗}.

This p-value is affected by the concentration of positive
edges (which affects the B∗ that is returned), their number,
and the magnitude of their weights. The null hypothesis
is that the positive edge weights are not concentrated and
the sampling distribution is the empirical distribution of the
reference population.

Note that there are two possible reference populations:
the training goodware and the training malware. A low p-
value with respect to the malware population is indicative
of an application that is highly suspicious. A moderate p-
value with respect to the malware population and a low
p-value with respect to the goodware population indicates
typical malware behavior. A high p-value with respect to
the malware population and a low p-value with respect to
the goodware population indicates a borderline application
– it performs operations that are unusual for goodware but
are not that suspicious relative to previously seen malware
behavior (in the training data).

Note that computation of empirical p-values requires a
one-time pre-processing of the reference population.

Resampling p-values with reference populations.
An empirical p-value is accurate when the training data is

large (since it would be an average over many data points).
For smaller data sets, we propose the resampling p-values
returned by Algorithm 3.

Given a new graph G∗, it first creates a set of resampled

graphs G
(r)
1 , . . . , G

(r)
k by replacing the edge weights of G∗

with weights sampled from a distribution Pweight (which we
will discuss shortly). To compute the p-value, it compares
the average weight of the subgraph extracted from G∗ to the

average weight of the subgraphs extracted from the G
(r)
i .

There are several ways of obtaining a distribution Pweight.
Resampled p-values with respect to the goodware reference
population use the empirical distribution of edge weights
from SDGs in the training goodware; resampled p-values
with respect to the malware reference population use the
empirical distribution of edge weights from SDGs in the
training malware.

1We call Bi the test statistic. We use average edge weight
but other statistics can be used too.



Algorithm 3 Resampling p-values

Input: Pweight (a distribution over edge weights),
Input: SubgraphMiner (a subgraph mining algorithm)
Input: G∗ (a new graph to test)
Output: a p-value
1: B∗ ← average edge weight of SubgraphMiner(G∗)
2: for i = 1, . . . , k do

3: Create graph G
(r)
i with the same structure as G∗.

4: For each edge in G
(r)
i assign it a weight as a random

sample from Pweight

5: B
(r)
i ← average edge weight of SubgraphMiner(G

(r)
i )

6: end for
7: return 1

k

∑k
i=1 1{B(r)

i >=B∗}

Note that this test only resampled edge weights and per-
forms no randomization of the structure of the graph. We
intentionally avoid randomizing the structure of the graph
because there is no evidence that existing random graph
models are plausible generative models for system call de-
pendency graphs.

Permutation p-values.
Permutation p-values are designed only to check for con-

centrations of positive edges. They do not compare the mag-
nitude of the edge weights to reference populations. Hence,
their role is to help us understand empirical and resampled
p-values. If empirical and resampled p-values are low it
could be due to two reasons – a high concentration of pos-
itive edge weights in the extracted subgraph or large edge
weight magnitudes. Generally, the concentration of positive
edge weights is responsible if the permutation p-value is low;
the edge weight magnitudes are responsible if the permuta-
tion p-value is high.

Permutation p-values are computed in a similar way to re-
sampled p-values. The resampled p-value computation cre-

ates a set of graph G
(r)
1 , . . . , G

(r)
N by resampling the edge

weights for the graph G∗. The permutation p-value compu-

tation creates G
(r)
i by making a copy of G∗ and permuting

its weights (i.e., randomly reassigning the weights to differ-
ent edges). Again it extracts a subgraph S∗ from G∗ and a

subgraph Si from each of the G
(r)
i and counts the fraction

of Si that have a higher average edge weight than S∗.

4. EXPERIMENTS
We collected 2393 executables from 50 malware families to

produce 2393 system call dependency graphs. We collected
50 goodware programs (based on the list used by [12]) and
executed the goodware binaries multiple times to generate
434 goodware system call dependency graphs. We also ob-
tained data from the McAfee website [15] which contains a
plain text description of known activities of each malware
family in our collection. An example of this kind of data
is shown in Figure 2, which contains the description of a
sample from the LdPinch family.

To generate the SDGs, malware and goodware binaries
were executed in a sandbox; invoked system calls were traced
by WUSSTrace [24] (which traces system calls by injecting
a shared library in the address space of the traced process).
All binaries were executed for up to two minutes. The exe-
cution traces were parsed using Pywuss [3] to generate SDGs

A c t i v i t i e s R i s k  L e v e l s

Attempts to write to a memory location of a protected process.

Attempts to write to a memory location of a Windows system
process

Attempts to write to a memory location of a previously loaded
process.

Enumerates many system files and directories.

Adds or modifies Internet Explorer cookies

M c A fe e  S c a n s S c a n  D e t e c t i o n s

McAfee Beta W32/Areses.gen.a

McAfee Supported W32/Areses.gen.a

System Changes

Some path values have been replaced with environment variables as the exact location may vary with different configurations.
e.g.
%WINDIR% = \WINDOWS (Windows 9x/ME/XP/Vista/7), \WINNT (Windows NT/2000)
%PROGRAMFILES% = \Program Files

The following files were analyzed:

3055b8ba8b9c0379e9499f675bd98407d963781e

The following files have been added to the system:

C:\Archivos de programa\Shareaza\Internet Explorer 9 setup.scr

%ALLUSERSPROFILE%\Application Data\Microsoft\Network\Downloader\1001 Sex and more.rtf.exe

C:\Archivos de programa\bearshare\Magix Video Deluxe 5 beta.exe

C:\Archivos de programa\Bearshare\Shared\Osama Bin Laden.jpg.pif

C:\Archivos de programa\Bearshare\Microsoft WinXP Crack full.pif

C:\Archivos de programa\Morpheus\Serials edition.txt.pif

%TEMP%\Message.hta

%PROGRAMFILES%\Bearshare\Star Office 9.scr

C:\Archivos de programa\limewire\How to hack new.doc.pif

%PROGRAMFILES%\Bearshare\Shared\Eminem full album.mp3.pif

Figure 2: Description of LdPinch Activities [15].

(with an edge between system call invocations x and y if x
returns a handle that y consumes).2

4.1 Malware Detection
Recall that our framework performs two distinct func-

tions: malware detection (using a linear classifier such as
logistic regression) and subsequent extraction of statistically
significant subgraphs (from samples it labels as malware) to
help prioritize an expert’s analysis of the executable.

In this section we compare the malware detection rates
with Holmes [12] and with two commercial anti-virus prod-
ucts, AVG antivirus [2] and ThreatFire [22],3 at the 0% false
positive rate on the ROC curve. Note that a comparison to
Holmes is qualitative at best: we have to use reported num-
bers [12] because neither the code nor data was available
(but our dataset was constructed to closely match the de-
scription in [12]). It is also not clear if the training goodware
for Holmes was excluded from the testing set.

We randomly split the data (SDGs with malware/goodware
labels) into three pieces while ensuring that malware fami-
lies present in one piece do not appear in the other pieces.
We ensured that one piece contained approximately 60%
of the total malware and 60% of the total goodware; this
piece was used for training (i.e. training logistic regression
models [11] with different regularization parameters) and we
used the F-score method for feature selection [6] to keep only
the top 50% of the features (see Section 3.1.2). The second
piece, the holdout set (used for model selection), contained
approximately 20% of the total goodware and 20% of the to-
tal malware. The third piece, also containing approximately
20% of the goodware and 20% of the malware, was used to
evaluate the accuracy of the selected model. We repeated
this partitioning procedure five times (with different sets of
families/programs in each piece) and averaged the results.

The results are shown in Table 1. The primary conclusion
is that the linear classifier is good at separating malware
from goodware and so its weight parameters form a reason-
able basis for statistical testing of subgraphs.

4.2 The Silver Standard
Having evaluated detection rates, we must next evaluate

the quality of extracted subgraphs. This involves matching

2In our own attempts to reproduce work such as [3], we
found that producing an SDG using heuristics instead of
dynamic taint analysis [17] resulted in almost the same pre-
cision and recall. Refined SDGs are useful for engineering
purposes but would not be expected to produce dramatically
different results.
3In order to test performance on unseen malware, we could
not use the most recent versions of AVG and ThreatFire as
they have been updated to include our malware samples.



AVG ThreatFire Holmes Our Framework
58.37 67.08 86.56* 86.77

Table 1: Malware detection rates at 0% false positive.
*Reported from [12]

them to plain text descriptions of malware behavior. One
way to do this is manually [12]. However, there are draw-
backs to the manual approach. First, manual judgments
require considerable expertise (and can still be noisy, with
high false positive rates [14]). Second, they can lead to ex-
perimenter bias. Thus we seek a more automated approach
with the creation of an evaluation dataset, called the silver
standard, which we describe next.

An ideal dataset would contain annotations of system call
dependency graphs that indicate which subgraphs corre-
spond to malicious activity. Such a “gold standard” does not
exist so we constructed an approximation to it, called the
silver standard, using the plain-text descriptions obtained
from the McAfee website [15] (see Figure 2).

For each piece of malware, we first convert its plain-text
activity into a list of system calls. For example, the activity
‘Creates registry keys and data values to persist on OS re-
boot’ is converted to the list {NtOpenKey, NtSetValueKey}.
Note that there is no unique translation between textual de-
scription and system calls and so some noise is necessarily
introduced in this process.

Now, the system call dependency graphs consist of a dis-
joint union of many (usually small) connected components.
For each connected component, we keep it if it contains an
edge between any two system calls on this list. Then we
remove edges whose vertices are not in the system call list.
Next, we apply the Kruskal-based algorithm (Algorithm 1)
to each component in order to prune irrelevant edges. We
remove vertices for wait-related system calls and NtClose
(whose presence/absence has no causal effect on malicious
behavior). The wait-related system calls, such as NtWait-
ForMultipleObjects, are used to wait until a specified crite-
ria is met or a time-out interval has elapsed. Finally, we also
remove repetitive/redundant NtFreeVirtualMemory and Nt-
FlushVirtualMemory invocations y1, y2, . . . , yk that have an
incoming edge from the same node x and have no outgoing
edges; we only keep y1, the first of these duplicate calls.

In this way, for each malware SDG, we obtain a sub-
graph (consisting of possibly many connected components)
that is marked as malicious activity. Such a subgraph is
called a silver standard graph. As an example, Figure 3
shows the connected components of a silver standard graph
from a sample in the Banbra family. According to Syman-
tec [21], Banbra is a Trojan horse that attempts to steal
financial information from the compromised computer and
send the information to a remote location. Component SS1
was induced by an attempt to launch an instance of Internet
Explorer. Components SS2 and SS3 resulted from writing
stolen information to a file and sending it over the internet
respectively. SS4 resulted from creating a mutex to avoid
infecting the same computer twice. SS5 and SS6 resulted
from adding/modifying registry keys. SS7 was induced by
checking a process’s privilege.

It is important to note that the creation of the silver stan-
dard graphs is a noisy process due to the conversion of a
textual description to a system call list and its automated

Figure 3: Components of a silver standard graph of a sample
in the Banbra family

matching to subgraphs of malware SDGs. Another compli-
cation is that malware does not always perform malicious
activity every time it is run. Note, however, that the alter-
native is a manual inspection, which is also noisy and which
risks introducing experimenter bias.

4.3 Evaluation of Extracted Subgraphs
We evaluate the subgraphs extracted by our framework

using the Kruskal-based algorithm (Algorithm 1). We can
measure two quantities for these subgraphs: their p-values
and their similarities to the silver standard graphs.

To measure the similarity between a subgraph S extracted
from a malware sample and the corresponding silver stan-
dard graph Sag for that sample, we use F1, precision, and
recall scores defined in the following way. Precision is the
fraction of distinct edges in S that are also in Sag, recall is
the fraction of distinct edges in Sag that also appear in S,
and F1 is the harmonic mean of precision and recall.

4.3.1 Correlation between p-values and F1 scores
The silver standard graphs were constructed with the help

of textual descriptions of malware behavior. The computa-
tion of p-values does not have access to this information.
Thus the next set of experiments are designed to measure
the level of agreement between the p-value of an extracted
subgraph and the F1 similarity score (between that sub-
graph and the silver standard graph).

We used a train/holdout/evaluation data partition as de-
scribed in Section 4.1. We used the evaluation set for ex-
tracting subgraphs and computing p-values. For reference,
the evaluation set contained executables from the malware
families Rbot, Downloader, Mydoom, LdPinch, Gaobot, On-
LineGames, Hupigon, Stration, and Banbra; it also con-
tained the goodware openOfficeWriter, 7zip, Bitcomet, Speed-
Fan installation, openOfficeDraw, Chrome, mysql, winrar,
and AVG Antivirus.

For each malware sample, we ran the subgraph mining
algorithm. We computed the p-value of the returned sub-
graph along with its F1 similarity to that sample’s silver
standard graph. Ideally, the similarity score would be high
and the p-value would be low (to indicate statistical signifi-
cance). Thus, the p-value of the extracted subgraph should
be negatively correlated with the F1 score.

For a quantitative assessment, we calculated Pearson cor-
relation between p-values (using the permutation method)



Malware Correlation
Stration -0.4123

OnLineGames -0.1643
Rbot -0.0289

Hupigon 0.5666
Banbra -0.6952
Gaobot -0.3932

Downloader -0.1136
LdPinch -0.2201
Mydoom -0.2365

Table 2: Correlations between p-values and F1 scores of
malware samples.

and F1 scores in all malware families in the evaluation set.
The results are shown in Table 2. With the exception of the
Hupigon family, all correlations are indeed negative. The
reason that Hupigon samples had a positive correlation was
the following. This family is classified by McAfee[15] as
a backdoor. In general, a backdoor will simply provide a
hacker with a convenient access point to a machine to en-
able future malicious activities. Without a command from
a hacker, we suspected that our backdoor samples will not
exhibit much malicious behavior. To check this, we divided
the Hupigon samples into two groups: the significant sam-
ples, from which our framework extracted subgraphs with
low p-values, and the non-significant samples (i.e., the rest
of the samples). There were only 2 significant samples and
their exhibited behaviors consisted of: 1) checking access
tokens of other processes (possibly with an attempt to use
memory of another process), 2) sending data over the net-
work, and 3) checking a mutant (windows terminology for
a mutex) and creating one if it didn’t exist. There were 28
non-significant samples and 24 of them only exhibited the
third behavior, which was part of their extracted subgraphs
and which is not necessarily malicious.

We can perform a similar experiment with goodware. From
each SDG we can extract a subgraph and compute its p-
value. We can also compute its F1 score with respect to the
best matching silver standard graph out of all malware sam-
ples. In this case, the correlation should not be negative.
The average correlation was 0.3348.

4.3.2 Comparison of p-value computations
Recall that we presented three methods for computing

p-values: empirical, resampling, and permutation p-values.
Empirical p-values with respect to the goodware reference
population have similar interpretations to false-positive rates
(i.e., how many goodware training samples exhibit more sus-
picious behavior), while empirical p-values with respect to
the malware reference population compare a sample’s behav-
ior to typical malware behavior. Resampling p-values are an
approximation to empirical p-values, can be computed with-
out storing the training data, and can be preferable when
the size of the training data is small. Both empirical and
resampling p-values are affected by how many suspicious
edges (i.e., edges more often associated with malware) there
are relative to the reference population and by how clus-
tered those edges are. On the other hand, permutation p-
values only consider the how clustered those edges are and
are essentially designed to measure whether such edges are
grouped together in a manner that is not random (e.g., they
are chained together for a common purpose).

Table 3 shows average p-values of subgraphs from mal-
ware and goodware families using the empirical, resampling,
and permutation techniques. For the case of empirical and
resampling, we show p-values with respect to malware and
goodware reference populations.

Since malware does not always exhibit malicious behav-
ior in every execution, the purpose of this table is not to
highlight malicious activity (this will be done in Section
4.3.3, where we focus specifically on samples that have low
p-values). Instead, the primary purpose of this table is to
highlight agreement/disagreement between these three ap-
proaches. For example, we notice that average p-values with
respect to goodware reference populations are lower than
with respect to malware populations (e.g., because behav-
ior that is atypical for goodware is not necessarily atypical
for malware). We also note that the average p-value of mal-
ware samples is generally lower than the average p-values for
goodware samples, even though malware does not always ex-
hibit malicious behavior. There are two malware families,
Hupigon and Gaobot, that have higher p-values than the
other malware families. They are both backdoors [15] with
similar behavior. The explanation for their high p-values is
similar to the discussion of Hupigon in Section 4.3.1.

Note that several goodware have low permutation p-values:
SpeedFan installation, Chrome, 7zip, and winrar. For Speed-
Fan installation and Chrome, the p-values are significant. As
discussed in Section 3.2.2, the cause is due to a concentra-
tion of positive edges. For example, SpeedFan installation
contained a very large connected component that consisted
of positive edges. The system calls involved various virtual
memory and process management functions that are only
slightly more indicative of malware (in our training data)
and hence many edges had small but positive edge weights.
The empirical and resampling p-values were not significant
because of these edge magnitudes. Note that both malware
and goodware SDGs contain edges with positive weights and
edges with negative weights. As Figure 4 shows, the posi-
tive edge magnitudes in SpeedFan installation are generally
smaller than is typical even for goodware.
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Figure 4: Cumulative distribution function of positive edge
weights in SpeedFan installation and the average cumula-
tive distribution function of positive edge weights in train-
ing goodware. The cumulative distribution function that
increases fastest is the one that has more of the smaller val-
ues (i.e. more edges with smaller positive weights).



Kruskal-based subgraph extraction

Family Permutation
Empirical Resampling

Goodware-reference Malware-reference Goodware-reference Malware-reference
M

a
lw

a
re

Stration 0.0736 0.4719 0.9286 0.4977 0.9405
OnLineGames 0.0900 0.4719 0.9286 0.5170 0.9525
Rbot 0.0131 0.0612 0.1939 0.0707 0.1280
Hupigon 0.7035 0.4722 0.9550 0.5103 0.9483
Banbra 0.2088 0.1244 0.5134 0.2323 0.5192
Gaobot 0.7255 0.5778 0.9087 0.4644 0.9250
Downloader 0.0419 0.3066 0.7355 0.3640 0.7646
LdPinch 0.1109 0.2536 0.6897 0.2759 0.8263
Mydoom 0.0013 0.1707 0.6386 0.2967 0.8733

G
o
o
d
w

a
re

AVG Antivirus 0.6590 0.8502 0.9992 0.1800 0.7300
Bitcomet 1.0000 0.8014 0.9907 0.7067 1.0000
SpeedFan installation 0.0000 0.5071 0.9684 0.7973 1.0000
mysql 0.9710 0.4634 0.9831 0.6900 1.0000
Chrome 0.0000 0.2648 0.9022 0.5700 0.9022
7zip 0.1447 0.2190 0.7572 0.4907 0.9560
winrar 0.1400 0.2997 0.9511 0.7667 1.0000
openOfficeDraw 1.0000 0.9992 1.0000 0.9870 1.0000
openOfficeWriter 1.0000 0.9022 1.0000 0.9862 1.0000

Table 3: Average p-values of subgraphs extracted by the Kruskal-based algorithm. Permutation, empirical, and resampling
p-values are described in Section 3.2.2. Note that malware samples do not always perform malicious activity in every execution.

Family F1 Precision Recall
Stration 0.4505 0.3836 0.7279
OnLineGames 0.3041 0.2351 0.4977
Rbot 0.4075 0.5347 0.4144
Hupigon 0.2759 0.2667 0.2857
Banbra 0.4534 0.4490 0.6212
Gaobot 0.3884 0.4163 0.3675
Downloader 0.3813 0.3869 0.4324
LdPinch 0.3862 0.4984 0.3198
Mydoom 0.4362 0.5625 0.3563

Table 4: Average F1, precision and recall scores between the
silver standard and extracted subgraphs with permutation
p-values ≤ 0.05

4.3.3 Similarity scores of significant subgraphs
Next, we computed similarity scores of significant sub-

graphs with respect to the silver standard graphs. The re-
sults are shown in Table 4. We extracted a subgraph for each
executable in each malware family using the Kruskal-based
algorithm. We kept the subgraphs that were statistically
significant (i.e. permutation p-values ≤ 0.05) and computed
the similarity of these subgraphs to the silver standard.

As an example of the types of subgraphs returned by the
Kruskal-based algorithm, see Figure 5, which contains a sub-
graph from a sample in the LdPinch family that has a per-
mutation p-value that is below 0.05. Note that the suspi-
cious behavior consists of all of the connected components
collectively (not individually). Connected components sg1,
sg2, sg3 and sg4 in Figure 5 can be induced by the actions of
sending stolen data over the network, checking its privilege,
adding an entry into the registry and making sure that the
memory space is free before sharing the memory between
their processes, respectively.

4.4 Comparison of graph mining algorithms
In this section, we evaluate the subgraph extraction com-

ponent (Section 3.2.1) of our framework. We consider the
Kruskal-based algorithm (Algorithm 1) and gSpan [26] (a
frequent subgraph mining algorithm) and LEAP [25] (a sub-

Figure 5: A significant subgraph of an LdPinch sample

Family F1 Precision Recall
Stration 0.1304 0.1071 0.1667
Banbra 0.3000 0.2143 0.5000
Gaobot 0.3000 0.2143 0.5000

Table 5: Average similarity scores of 95% significant mal-
ware subgraphs extracted by gSpan.

graph mining algorithm designed to discriminate between
two classes and which was used in [12] as part of a malware
detection framework). To use gSpan within our framework,
we modified line 3 in Algorithm 1 to call gSpan to obtain fre-
quent subgraphs at 5% frequency. To use LEAP, we simply
replaced Algorithm 1 with a call LEAP. The call to LEAP
requires positive samples and negative samples. For the pos-
itive samples, we used graphs from the malware executable
being tested; for the negative samples, we used the goodware
graphs so that it can learn to distinguish between that mal-
ware sample and the goodware. There was an imbalance in
size between the positive and negative samples provided to
LEAP and as a result it produced no significant subgraphs.
Hence, all of our subsequent comparisons are restricted to
the Kruskal-based algorithm and gSpan.

4.4.1 P-values
The average p-values of subgraphs, extracted by gSpan,

using permutation, empirical and resampling methods are
shown in Table 6. From the Table, average p-values of mal-
ware and goodware subgraphs are not that different. Results



Figure 6: A component with multiple edges of type (S1, S2)

from Tables 3 and 6 show that the Kruskal-based method
can extract subgraphs with more reasonable p-values than
gSpan. The reason for the difference is that gSpan does not
use edge weights (it uses subgraph frequency instead). Thus
a comparison of these two tables show that frequent behav-
iors and malicious behaviors are entirely different concepts.

4.4.2 Similarity scores
The gSpan mining algorithm produced significant sub-

graphs (p-value below 0.05) only from samples from the Stra-
tion, Banbra and Gaobot families. Table 5 shows the aver-
age similarity of those subgraphs to the corresponding silver
standard graphs. By comparison, Table 4 shows the cor-
responding results for the Kruskal-based algorithm, which
produced higher similarity scores.

4.5 Unseen Behaviors
Template-based malware detection frameworks look for

fixed patterns, such as the presence of pre-specified sub-
graphs in SDGs of new programs. One of their disadvan-
tages, therefore, is their limited ability to identify malicious
behavior that has not previously appeared in their training
sets. On the other hand, our statistical testing framework is
more flexible because it considers the presence of clusters of
certain types of edges without pre-defined connection pat-
terns between the edges. As a result, subgraphs that did
not appear in the training data can still be flagged as mali-
cious (furthermore, it is more difficult for malware authors
to counter this approach relative to fixed templates).

In the final set of experiments, we search for an empirical
demonstration by checking our testing set for behavior that
did not appear in the SDGs used for training and model
selection. For each malware sample in our testing set, we
extract a subgraph using the Kruskal-based algorithm. We
kept only the extracted subgraphs that were significant (in
this case, those that had permutation p-values below 0.05).
Now, each extracted subgraph Si may consist of several dis-

joint connected components S
(1)
i , . . . , S

(k)
i . For each compo-

nent, we check whether it is isomorphic to a subgraph of any
training malware SDG and only keep those components that
are not subgraph isomorphic to training malware SDGs.

There were many connected components S
(j)
i belonging to

extracted subgraphs that survived this pruning. However,
we were not satisfied with most of them because of the fol-
lowing reason. Many components S

(j)
i had multiple edges of

the same type (i.e. they connected nodes with the same la-
bels, as in Figure 6). In many cases, we found that we could
remove the extra copies of those edges so that the resulting
component was still connected and was also isomorphic to a
subgraph of a training malware SDG.

However, there was one component of an extracted sub-
graph from the Stration family that survived even this prun-
ing step. Figure 7 shows the part of the SDG containing the
extracted component. Nodes and edges belonging to the ex-

tracted component are marked in bold (the rest of the nodes
and edges are shown to give context to this example). This
malware instance was trying to execute its code in another
process’s context. To do so, it first created a process in a
suspended process with the CREATE SUSPENDED param-
eter to suspend the target’s main thread. Next, it queried
the base address value of the suspended process. It then
read the code from its process and wrote into the memory
space of the suspended process, starting at the base address.
When the copy was done, it resumed the thread with the in-
struction pointer of the suspended thread to the location of
the copied code. We note that some malware in our train-
ing data also has this high-level behavior. However, their
edges are connected together in a way that is different from
Figure 7. This reflects multiple ways of achieving the same
goal, but with a different graph structure (something that
template-based schemes may have difficulty with).

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a framework for classifying

malware and identifying suspicious program behavior us-
ing statistical techniques. Our framework uses information
contained in the system call dependency graph of an exe-
cutable. Other approaches, such as static analysis and sta-
tistical analysis of a binary are also useful. In the future, we
plan to incorporate these sources of information as well as
refine the subgraph extraction algorithms.
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